
Classify News Articles 

Overview 
Statistical classification is used to identify a subset of categories based on a particular data point. The data points can 
include text, images, and videos. A model is trained on a known dataset then used to predict the category of a separate 
dataset. 

Getting familiar with the dataset 
In this first section we are exploring the dataset. 

The main columns we are concerned about in the dataset are: 
• text_field. The main text of the article 
• leaf_label. The secondary category of each article 
• root_label. The primary category of each article 

The below histogram shows how many documents have a certain text_field length. This length is based on the number 
of alphanumeric characters. As you can see the histogram shows that most articles contain between 0 and 3000 
alphanumeric characters. 

 

The below histogram shows how many documents are assigned each leaf_label. As you can see the histogram shows 
that every leaf_label contains the same number of documents. 

 

The below histogram shows how many documents are assigned to each root_label. As you can see the histogram shows 
that every root_label contains the same number of documents. 

 



Feature Extraction 
When completing feature extraction of a text field there are different methods of looking at the individual words within 
the text: 

• Extracting every word in the text. 
• Eliminating “stop” words 
• Stemming words 
• Lemmatizing words 

The main problem with using every word is that you will have words contained in every document many times (for 
example the word “the.”) This will cause the corpus to be too big and slow. However,  removing them is a new 
complication. 

Before you remove the stop words you want to either stem or lemmatize the words, therefore reducing the size of the 
corpus and increasing its performance. 

Stemming 
Stemming is the process of removing the last letters in attempt to reduce the word to its base. For example, the word 
compared would be stemmed to compare. Below are the pros and cons of stemming. 

Stemming 

Pros: 
Allows for more word matching 
Reduces model overfitting 

Cons: 
Can change meaning. For example, Organize will 
stem to Organ 

Lemmatizing 
Another method of reducing the corpus is Lemmatizing. Lemmatization resembles stemming. They both reduce the 
words to their bases. The main difference is that lemmatization also considers the part of speech (pos) of each word 
(i.e., Noun, Verb, Adverb, etc.) Below are the pros and cons of lemmatizing. 

Lemmatizing 

Pros: 
Uses the pos of the word to define the correct 
base word 
The meaning of the word is not changed when a 
base is determined 

Cons: 
The pos needs to be determined 
Linguistic fundamentals are required resulting in 
more complicated code 

Stemming vs. Lemmatizing 
Since lemmatizing attempts to map multiple words to a single root word correctly and efficiently, the dictionary size may 
be smaller as compared to stemming, which bluntly removes the suffix and could change the meaning of many words. 

Order of Operations 
Removing different words like stop words, punctuation, and numbers, should be conducted after lemmatizing as their 
removal could change the sentence structure causing the pos or the words to be inaccurate. If the pos is inaccurate the 
base word could also be inaccurate causing change of meaning. 

Vocabulary 
Once the words have been extracted a dictionary (corpus) is built. There are 2 main methods for building this dictionary: 

• Bag of Words (BOW) 
• Term Frequency-Inverse Document Frequency (TF-IDF) 



Bag of Words (BOW) 
This approach determines the word frequency in each document. No other words are eliminated using this technique. 

Term Frequency-Inverse Document Frequency (TF-IDF) 
This approach also determines the word frequency in each document. The main difference is the ability to specify and 
minimum and maximum document frequency. 

Minimum document frequency (min_df) removes any words that are not contained in the specified minimum number of 
documents. The higher the value of min_df, the smaller the size of the dictionary. 

Maximum document frequency (max_df) removes any words that are contained in more documents than the specified 
maximum percentage. When a max_df value of 0.8 is applied all words that are contained in over 80% of the documents 
are removed. The lower the values of max_df, the smaller the size of the dictionary 

Dimensionality Reduction 
Even using TD-IDF the model could still perform poorly due to the high dimensionality and sparseness of the data. In this 
project 2 different dimensionality methods will be discussed: 

• Latent Semantic Indexing (LSI) 
• Non-negative Matrix Factorization (NMF) 

Latent Semantic Indexing (LSI) 
This process looks at the number of documents associated with each word in the corpus and determines the words with 
the highest values. It then keeps only the number specified (top k) 

One way to determine the optimal value for k is to calculate the explained variance ratio (the difference between the 
prediction and actual) for different values of k. The optimal value is 1 but a balance needs to be determined as the 
higher the explained variance the larger the corpus and the slower the model. 80% is a good ratio to look for in your 
model. Based on the below graph a k value of around 700 would be optimal. 

Non-negative Matrix Factorization (NMF) 
This process looks at things a little differently. Instead of looking at each word separately it looks at combinations of 
words to try to derive topics. The instance count of each topic is then determined and only the words associated with 
the top specified number are kept. 

One way to determine the optimal value for k is to calculate the reconstruction error (the difference between the 
prediction and actual) for different values of k. The optimal value is 0 but a balance needs to be determined as the lower 
the reconstruction error the larger the corpus and the slower the model. Based on the below graph a k value of around 
1250 would be optimal. 

Latent Semantic Indexing (LSI) Non-negative Matrix Factorization (NMF) 

  



Data Split Processes 
Once the dimensions have been reduced the next step is the train the model. Before the training can begin the dataset 
needs to be split into different sections. There are different methods for doing this including: 

• Train-Test 
• Cross Validation (K-fold) 

Train-Test 
Divide the dataset into two separate objects (train dataset and test dataset) using an 80/20 split. The train dataset is 
used for training and the validation is completed using the test dataset. 

Cross Validation (K-fold) 
Divide the dataset into k number of evenly sized datasets. The process then iterates through k times using a different 
sub dataset for testing and the rest for training. The scores are then averaged over all the iterations. 

Here is an example of how a 5-fold cross validation would work. 
Iteration 1 Test Train Train Train Train 
Iteration 2 Train Test Train Train Train 
Iteration 3 Train Train Test Train Train 
Iteration 4 Train Train Train Test Train 
Iteration 5 Train Train Train Train Test 

Classification Algorithms 
In this project I will discuss the following: 

• Support Vector Machine (SVM) 
• Logistical Regression 
• Naïve Bayes Model 

Support Vector Machine (SVM) 
The objective of the SVM model is to determine a linear (straight line) division between categories. There are distinct 
types of support vectors including small (soft) margin and large (hard) margin. Small margin tries to minimize the 
distance between the support vector and the data elements whereas large margin tries to maximize that distance. 

SVM tries to find the maximum margin that separates the classes. 

Here is a representation of the large and small margin support vectors. (Image provided from the following link) 

 

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


When completing multiclass classifications there are 2 options: One vs One and One vs The Rest. 

One vs One (based on 4 classes) 
• Binary classification Problem 1: class1 vs class2 
• Binary classification Problem 1: class1 vs class3 
• Binary classification Problem 1: class1 vs class4 
• Binary classification Problem 1: class2 vs class3 
• Binary classification Problem 1: class2 vs class4 
• Binary classification Problem 1: class3 vs class4 

One vs The Rest (based on 4 classes) 
• Binary classification Problem 1: class1 vs (class2 & class3 & class4) 
• Binary classification Problem 2: class2 vs (class1 & class3 & class4) 
• Binary classification Problem 3: class3 vs (class1 & class2 & class4) 
• Binary classification Problem 3: class4 vs (class1 & class2 & class3) 

One issue with the One vs The Rest model is the imbalance that occurs when comparing one class to many. 

To deal with the class imbalance problem the SMOTEENN process is used. This process combines SMOTE (Synthetic 
Minority Oversampling Technique) with ENN (Edited Nearest Neighbors.) These processes are used to add samples 
(oversample) to the minority class while removing samples (undersample) from the majority class thus balancing the 
dataset. 

Logistical Regression 
The objective of the Logistical Regression model is to determine a linear (straight line) division between categories. 
Logistic Regression does this by minimizing errors. 

There are 3 different logistic regression models we will use in this project: 
• Without Regularization 
• With L1 Regularization 
• With L2 Regularization 

Naïve Bayes Model 
The Naïve Bayes classifier tries to separate data into different classes according to the Bayes’ Theorem, which takes the 
test results correcting for “skew” due to false positives. It’s naïve because it is assuming that all the words in the corpus 
are independent of each other and equally likely to appear. 

There are several types of Naïve Bayes models but in this report, we will just look at the Gaussian, which assumes that 
the distribution of words in the corpus follows a gaussian (normal) distribution. 

Performance Measures 
Classification quality can be evaluated using different methods: 

• Classification Measures (accuracy, precision, recall, and F-score) 
• Confusion matrix. 
• ROC Curve 

Classification measures 
Accuracy 
Accuracy shows how close the measurements are to the actual values 



Precision 
Precision shows the degree to which repeated measurements, under the same conditions, show the same result. This is 
often measured using the standard deviation. 

Recall 
Recall, or True Positive Rate, shows the percentage of measurements that were correctly predicted by the classifier. 

F-Score 
F-score combines the precision and recall measures into a single value. The value is based on the harmonic mean of the 
precision and recall values. The harmonic mean is close to the minimum of the 2 values. A high F-score ensures that both 
precision and recall are reasonably high. 

Confusion Matrix 
The confusion matrix shows how well the model works by showing how the followings situations play out: 

• True Positive (TP) 
• False Positive (FP) 
• True Negative (TN) 
• False Negative (FN) 

The more classifications there are the more complex the matrix is. 

2x2 Confusion Matrix 
Below is a representation of a confusion matrix for a two-category classification. As you can see it’s fairly simple to 
determine a good model. The more the number of True Positives and True Negatives the more accurate the model is. 

  
Prediction 

  
1 0 

Actual 
1 True Positive False Negative 

0 False Positive True Negative 

True Positive and Negative are the number of times where the predicted value matches the actual. 
False Positive and Negative are the number of times where the predicted value is the opposite of the actual 

 
3x3 Confusion Matrix 
Below is a representation of a confusion matrix for a three-category classification. As you can see it’s still fairly simple to 
determine a good model though it is getting more complicated. The more categories you have the more difficult it gets. 

  
Prediction 

  
0 1 2 

Actual 

0 True 0 False 1 False 2 

1 False 0 True 1 False 2 

2 False 0 False 1 True 2 

The True Positive, True Negative, False Positive, and False Negative are now based on the Actual value. 
For Actual Value 0: 

• True Positive includes the values in the True 0 cell 
• False Negative includes the values in the False 1 and False 2 cells in the 0 row 
• False Positive includes the values in the False 0 cells in the 0 column 



ROC Curve 
The ROC Curve is a visual representation of the Confusion Matrix. The ROC Curve plots the True Positive Rate versus the 
False Positive Rate. The True Positive Rate is the proportion of observations that were correctly predicted to be positive 
divided by all positive observations (TP/(TP + FN)). The False Positive Rate is the proportion of observations that are 
incorrectly predicted to be positive divided by all negative observations (FP/(TN + FP)) 

Here is an example of an ROC curve. 

 

GridSearch 
As we have seen there are a of number combinations available of the following: 

• Feature Extraction 
• Dimensionality Reduction 
• Classifiers 

Also, each section has different parameters that need to be tuned for optimal training. 

Due to this complexity, it can be very time consuming to write the code to run and validate all the different 
combinations and parameters. 

One method to manage this is a GridSearch. You can build a process that uses parameters to define the what feature 
extractors, dimensionality reduction methods, classifiers, and parameters will be used. The process will run every 
combination and return the best parameters for each combination. This can be a very time-consuming process to run 
but will simplify the process of determining which combinations should be used. 

  



Data Classifications 
For this section we tried to classify the articles to the two different root_tabels (climate & sports) 

Binary Classification 
SVM Model 
The below are the results of a SMV model using different gamma values (0.0001, 1000, and 100000). The gamma value 
of 0.0001 is considered the small margin where the gamma value of 1000 is the large margin 

 

𝛄𝛄 = 0.0001 

 

𝛄𝛄 = 1000 

 

𝛄𝛄 = 100000 

 
 
As you can see the large margin support vector is more accurate than the small margin support vector. There are 2 ways 
to show this. First the confusion matrix from the small margin support vector shows no negative results which we know 
is not correct, also precision, recall, and f1 are all 0. One the other hand, the confusion matrix for the large margin 
support vector shows most of the items are either True Positive or True Negative, and the precision, recall, and F1 are all 
remarkably close to one. 

One way to determine the best value for gamma is to run the model for many different values and find out which has 
the best accuracy score. Below is a graph of such a test along with some of the accuracy scores. 

 

0.4755705601863648, gamma:0.0010 
0.8208022422014342, gamma:0.0200 
0.9173424817093145, gamma:0.0300 
0.9300131037746151, gamma:0.0500 
0.9384632184326429, gamma:0.0900 
0.9396698576784479, gamma:0.1000 
0.9529356095075165, gamma:1.0000 
0.9565555272449314, gamma:10.0000 
0.9541404287846250, gamma:100.0000 
0.9613820842281513, gamma:1000.0000 
0.9619917737414918, gamma:10000.0000 
0.9607851344956867, gamma:100000.0000 
0.9607851344956867, gamma:1000000.0000 



We can see from the graph that the best value for gamma is 10000. Below is the ROC curve, confusion matrix and 
classification measures when gamma is 10000. 

 

 

Logistic Regression Model 
Here is the ROC curve, confusion matrix, and classification measures for a logistical model without regularization. 

 

 
 

For L1 and L2 regularization a similar process used for the SVM model is also used here. Below are the gamma values for 
different gamma values. As you can see from the data the best L1 gamma is 0.1000 and the best L2 gamma is 0.0100. 

L1 
0.9541313289411422, reg: 0.0001 
0.9547337385796965, reg: 0.0010 
0.9571470170713063, reg: 0.0100 
0.9577494267098604, reg: 0.1000 
0.9517107705747462, reg: 1.0000 
0.9070469187929968, reg: 10.0000 
0.4991173151821789, reg: 100.0000 
0.4991173151821789, reg: 1000.0000 
0.4991173151821789 ,reg: 10000.0003 

L2 
0.9553379681869473, reg: 0.0001 
0.9571506570086994, reg: 0.0010 
0.9589597058930586, reg: 0.0100 
0.9571397371965201, reg: 0.1000 
0.9577403268663780, reg: 1.0000 
0.9462727041094894, reg: 10.0000 
0.9239398682342663, reg: 100.0000 
0.8617533578422452, reg: 1000.0000 
0.8309613074655117 ,reg: 10000.0003 

  



Below are the confusion matrix and classification measures for Liner Regression with no regularization, L1 regularization 
with gamma of 0.1000, and L2 regularization with gamma of 0.0100 

No Regulatization 
confusion matrix: 
 [[206   3] 
 [  7 199]] 
precision:  0.9851485148514851 
recall:  0.9660194174757282 
f1:  0.9754901960784313 
accuracy:  0.9759036144578314 

L1 
confusion matrix: 
 [[207   2] 
 [ 15 191]] 
precision:  0.9896373056994818 
recall:  0.9271844660194175 
f1:  0.9573934837092731 
accuracy:  0.9590361445783132 

L2 
confusion matrix: 
 [[192  17] 
 [ 12 194]] 
precision:  0.919431279620853 
recall:  0.941747572815534 
f1:  0.9304556354916067 
accuracy:  0.9301204819277108 

 
Naïve Bayes Model 
Below are the confusion matrix and classification measures for Gaussian Naïve Bayes model. As you can see it’s pretty 
accurate. 

 

 

 
GridSearch 
For this project I used the following options 

Module Options 
Loading Data Cleaned 

Not-cleaned 
Feature Extraction TF-IDF (min_df = 3,5) 
Compression Module None 

Stemming 
Lemmatization 

Dimensionality Reduction LSI (k=[5,50,200]) 
NMF (k=[5,50,200]) 

Classifiers SVM (use best gamma found above) 
L1 Logistic Regression (use best gamma found above) 
L2 Logistic Regression (use best gamma found above) 
GausieanNB 

 

 



This process resulted in the 5 best combinations as follows: 

Rating clean lem_stem dim_red model CV Score n min_df test_perf 
1  clean stem NMF gaussian  0.972 200 5 0.975903614 
2  notclean stem NMF gaussian  0.972 200 5 0.975903614 
3  clean lem NMF gaussian  0.970 200 5 0.975903614 
4  notclean lem NMF gaussian  0.970 200 5 0.975903614 
5  clean nolemstem NMF gaussian  0.970 200 5 0.973493976 

Multiclass Classification 
For this section of the report, we looked at more than 2 classifiers. We used the leaf_label which contains the following 
values: Chess, Cricket, Soccer, Football, Forest Fire, Flood, Earthquake, Drought 

I completed three classification models: 
• GaussianNB 
• SVM – One vs One 
• SMV – One vs The Rest (with balancing and without) 

Here are the results 

GaussianNB 

 

SVM – One vs One 

 

SVM - One VS Rest (no balancing) 

 

SMV - One VS Rest (with balancing) 

 

 



Based on the results you can see that the element in the major diagonal that is more visible is “cricket” which 
means that it’s more easily distinguishable using the text data. 
The show that 2 groupings are found: 

i. soccer, football 
ii. forest fire, earthquake, flood 

After modifying the classes base on the above groupings, the accuracy of both the One VS One and One VS 
Rest improved. 

One VS One 

 

One VS Rest 

 
 

Though accuracy decreased a bit when the data was balanced 

One VS One 

 

One VS Rest 
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